

Courses » Industrial Instrumentation

Announcements

Course

Forum

Progress

Mentor

Unit 4 - Week 3

Course outline How to access the portal Week 1 Week 2 Week 3 Lecture 7: Thermistor Lecture 8: Thermocouples Lecture 9: Resistance Temperature Detector Quiz: Week 3 Assignment on Temperature Measurements Week 3: Assignment Solution Feedback for Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12

Week 3 Assignment on Temperature Measurements

1) 2 points

For a K-type thermocouple, thermoelectric voltage at 50 °C and 500 °C are 2.023 m and 20.644 mV, respectively when the reference junction is kept at 0 °C. Thermoelectri voltage versus temperature relation is approximated as, $e_{0-t} = a \times t + b \times t^2$. For certain temperature (t₁) of the hot junction, the thermocouple shows 10 mV, with the reference junction at 25 °C. Find, the unknown temperature 't₁' of the hot junction.

- a) 269.4 °C
- b) 278.5 °C
- o) 298.7 °C
- d) None of these

Accepted Answers:

a) 269.4 °C

2)

2 points

Resistance-temperature relation for a thermistor is give by, $R = R_0 \exp \left[\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$

where 'R' is resistance of thermistor at temperature T, R_0 is resistance of thermistor temperature T_0 . β = 3800 K, is a constant for a particular thermistor. It is known that for T_0 = 25 °C, R_0 = 1250 Ω ± 5 %. Calculate the maximum error in measurement temperature T = T_1 , if resistance R at temperature T_1 is measured to be 2000 Ω .

- a) 0.98 K
- b) 1.64 K
- c) 1.11 K
- d) 1.06 K

Accepted Answers:

c) 1.11 K

Industrial Instrumentation - - Unit 4 - Week 3 3) Based on Figure 1., answer question (3) and (4) 2 points Figure 1 Assume α = 1, find the normalised sensitivity (of e_0/e_{ex}) of the circuit for very small x. a) 0.25 b) 0.5 o) 0.75 d) 1.0 **Accepted Answers:** a) 0.25 3 points If it is required to keep the maximum non-linearity within 5 % over the range of between 0 and 0.5, then evaluate the minimum value α . a) 7 (d b) 8 c) 9 (d) 10 **Accepted Answers:** c) 9 5)

2 points

If the circuit in Figure 2 is used in place of Figure 1, for RTD signal conditioning, then fin out (i) the normalised sensitivity (of e_0/e_{ex}) of the circuit with-respect-to x and (i maximum non-linearity of the output voltage V_0 .

- a) (i) 0.25; (ii) 0 %
- b) (i) 0.67; (b) 0 %
- c) (i) 0.5; (ii) 0.25 %
- d) (i) 0.5; (ii) 0 %

Accepted Answers:

b) (i) 0.67; (b) 0 %

2 points

Figure 3 shows two circuits for improving the linearity of thermistor response. I maximum allowable non-linearity is 2 %, then which of the two circuits can be used for larger input range? (Assume, $R_1 = R_2 = R$ and $R_T = R \times (1+x)$)

Figure 3

- a) circuit (a)
- b) circuit (b)
- c) Both have same input range
- d) Insufficient data

Accepted Answers:

b) circuit (b)

2 points

7)

The following circuit, in Figure 4, is used to measure temperature using a Pt-100 RTD (R_1 (assume, 1^{st} order resistance-temperature relation for the RTD). The constant current source provides 1 mA current. Resistances of the lead wires are, $R_{L1} = R_{L2} = 0.6 \Omega$ and $R_L = R_{L4} = 0.7 \Omega$. If the voltmeter shows 138.5 mV, what is the measuring temperature (Temperature coefficient of resistance $\alpha = 0.00392 \Omega/\Omega$ -°C)

- a) 138.5 °C
- □ b) 100 °C
- o) 39.2 °C
- d) 98.2 °C

Accepted Answers: d) 98.2 °C

8) 2 points

Figure 5 shows a parallel combination of thermocouples. e_1 , e_2 and e_3 are the generate thermoelectric voltages at the output of the individual thermocouples as shown in th figure. Determine the expression for voltage e_0 as shown in the figure.

- \circ a) $e_0 = (e_1 + e_2 + e_3)/3$
- \bigcirc b) $e_0 = (e_1 + e_2 + e_3)$
- \bigcirc c) $e_0 = (e_1 \times e_2 \times e_3)$
- d) None of these

Accepted Answers:

a)
$$e_0 = (e_1 + e_2 + e_3)/3$$

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development Powered by

